
Appears in AAA-IDEA 2005 c©IEEE

SOSIMPLE: A Serverless, Standards-based,
P2P SIP Communication System

David A. Bryan and Bruce B. Lowekamp
Computer Science Department
College of William and Mary

Williamsburg, VA 23185
{bryan, lowekamp}@cs.wm.edu

Cullen Jennings
Cisco Systems, Inc.

170 West Tasman Drive, MS: SJC-21/3
San Jose, CA 95134
fluffy@cisco.com

Abstract

Voice over IP (VoIP) and Instant Messaging (IM) sys-
tems to date have either followed a client-server model or
have required the use of clients that do not follow any VoIP
or IM standard. We present SOSIMPLE—a fully decentral-
ized, P2P, standards-based approach to communications.
By building on the existing SIP/SIMPLE infrastructure for
VoIP and IM, we support reuse of clients, network infras-
tructure, and open-source protocol stacks designed using
current standards. By avoiding traditional centralized ar-
chitectures, SOSIMPLE addresses corporate privacy con-
cerns, eliminates dependency on constant Internet connec-
tivity, and supports ad hoc groups. SOSIMPLE implements
a DHT overlay based on Chord[24] using SIP messages,
replicating location information for reliability. The DHT is
used only for lookups, with actual communication passing
directly between clients. We discuss important issues for se-
curity and authentication, as well as adaptations of conven-
tional P2P routing for the social networks typical of per-
sonal communications. We are testing a prototype imple-
mentation of SOSIMPLE and anticipate a public release in
the near future.

1. Introduction

Voice over IP (VoIP) and Instant Messaging (IM) are
increasingly popular communications systems for private,
corporate, and academic purposes. Despite their popularity,
requirements for central servers (proxies), maintained lo-
cally or by third parties, limit growth and place a burden
on users. For example, companies concerned about intel-
lectual property typically ban the use of current, centralized

This work is partially supported by the Cisco University Research Pro-
gram. David A. Bryan is partially supported by the Virginia Space Grant
Consortium.

IM services, instead deploying their own in-house services.
These private IM realms address their security concerns but
may not allow interaction with external customers and can
be difficult for small organizations to deploy and maintain.

SOSIMPLE combines the SIP/SIMPLE [17] family of
IETF standards for VoIP and IM with the Self Organizing
properties of a Distributed Hash Table (DHT) P2P mecha-
nism. The result is a standards-based, decentralized com-
munications system. Our design allows for compatibility
with and reuse of existing SIP/SIMPLE network elements.
Because the implementation requires only slight modifica-
tions to the existing SIP protocol, we maintain compatibil-
ity with existing SIP infrastructure, such as SIP-enabled IP
phones and gateways. Furthermore, modules can be added
to existing IM clients to ensure functionality using a famil-
iar interface. The P2P overlay is built using a DHT cre-
ated through exchanging SIP messages, which are typically
well-supported by existing firewalls, and therefore retain
compatibility with current network infrastructure. We have
submitted a draft for a P2P SIP protocol based on SOSIM-
PLE to the IETF [1].

The primary contributions of this work are:

• Creating a fully-distributed, open P2P system for VoIP
and IM by extending existing standards.

• Identifying the security requirements for a decentral-
ized communications system running on a non-secure
network and proposing solutions that meet these re-
quirements.

• Proposing P2P technology that reflects the connectiv-
ity patterns of personal communications systems.

This paper presents several scenarios in which existing
IM/VoIP systems are unsatisfactory as motivation to derive
a set of requirements for a new approach. We explain why a
P2P SIP approach is best suited to meeting these require-
ments, and briefly cover SIP, P2P, and related work. We
present the SOSIMPLE architecture and discuss the impor-
tant research issues raised by our work.



2. Background and Challenges

2.1. IM and VoIP

IM/VoIP systems provide three basic functions. Re-
source location is responsible for identifying and locating
other users so conversations can be established. Ses-
sion establishment and management creates, controls, and
terminates text or multimedia sessions between users. Pres-
ence is the ability of users to monitor other user’s con-
nection status and to be notified when they arrive or
leave.

The majority of today’s VoIP and IM systems are central-
ized. Users connect using a User Agent (UA), which may be
a software application or a hardware device such as an IP or
mobile phone. The UAs connect to a central sever, usually
called a proxy, softswitch, or gatekeeper.

Several VoIP protocols are in wide use. Older protocols
such as the ITU’s H.323 place most intelligence in the cen-
tral server, while SIP pushes most of the intelligence to the
UAs but relies on central proxies for some functions. The
devices supporting these protocols represent a significant
investment.

Commercial IM protocols used by AOL, Yahoo and
MSN require users to connect to a server hosted at the
provider’s site. A few commercial products, as well as the
emerging IETF standards XMPP and SIMPLE [2, 14, 20]
allow a corporation or group to maintain their own server,
but these are still centralized.

2.2. SIP and SIMPLE

SIP and SIMPLE are text-based protocols derived from
HTTP [4], therefore message types and traffic are similar
to web traffic. SIP is a general protocol for establishing and
controlling multimedia sessions, but is most widely used for
VoIP. SIP embeds Session Description Protocol (SDP) [6]
information to specify the media parameters. While SIP de-
vices can be configured to communicate directly with each
other, in systems larger than two UAs a central server or
proxy1 is usually used. A SIP proxy is a more sophisticated
network element than a web proxy, maintaining location in-
formation about users and UAs, as well as routing signal-
ing traffic between UAs. Proxies also provide authentica-
tion and user name administration.

The signaling portion of the call consists of SIP mes-
sages flowing through the central proxies connecting UAs.
Media flows directly between the UAs for efficiency, typi-
cally in the form of Real Time Protocol (RTP) [21] pack-

1 In the SIP specification [17], the functions of a server are broken into
several network elements, including a proxy and a registrar, often im-
plemented together. We will refer to these elements collectively as a
proxy here for convenience.

ets. This separation is somewhat analogous to P2P file shar-
ing, where the files are exchanged directly between nodes.

SIMPLE is a set of SIP extensions for IM. Most aspects
of SIP and SIMPLE are identical, and we will note differ-
ences where appropriate. The most important difference is
that IM messages are generally carried directly in the signal-
ing path—there is typically no separate media stream when
using IM.

2.3. Scenarios Requiring a New Approach

While the traditional IM/VoIP solutions have succeeded
in many scenarios, there are a number of environments in
which the current protocols fail for technical, financial, se-
curity, or social reasons. We will briefly describe some of
these scenarios as motivation for SOSIMPLE’s approach.

• Security Conscious Small Organizations: Ser-
vices typically used by individuals and small orga-
nizations, such as AOL’s AIM, Microsoft’s Mes-
senger, and the Vonage VoIP service, use servers
located at the provider. Because all communica-
tion, even internal, passes through this external party,
many organizations have banned the use of these ser-
vices. While large organizations can install their own
internal systems, the personnel and equipment re-
quirements are too great for smaller organizations.

• Limited or No Internet Connectivity: If infrastruc-
ture is damaged in a large scale civil emergency, the
user is located in a remote location in the developing
world, or an ISP simply experiences a temporary fail-
ure, outside connectivity may be intermittent or non-
existent. Communication should be possible between
connected nodes without requiring access to the Inter-
net and without configuring a new server.

• Ad-hoc and Ephemeral Groups: Groups that collab-
orate may be ephemeral, such as in a meeting, class-
room, or conference setting. These users may want
to exchange text messages, establish voice or video
sessions, or use collaborative programs. Such users
should be able to easily establish a small network for
the duration of the event without configuring or con-
necting to a server.

• Censorship or Impeded Access: Some users may not
be allowed to access centralized, persistent servers be-
cause of government censorship or a carrier that pre-
vents access to competing services (such as a tele-
phone company prohibiting VoIP on a DSL line they
provide).

• Scalability: While many users enjoy the functional-
ity offered by services such as AIM or the Skype

2



[23] VoIP service, the reliance on a central author-
ity for availability and access is inherently unscal-
able and failure-prone. A decentralized system utiliz-
ing standards-based equipment should be more reli-
able, easier to join, and ultimately less expensive for
the users.

3. Requirements

The following features are required to solve the prob-
lems we have outlined.

• No Central Server: In several scenarios, secu-
rity or connectivity prohibit contacting an outside
server, therefore we require none be present.

• No Central Naming Authority: Users should be al-
lowed to select names, and a distributed system should
mediate the assignment and verification of identity. No
central authority should be involved in naming.

• Simple System Discovery: For scenarios where ap-
propriate, a simple mechanism must be available for
locating the system, for example a broadcast mecha-
nism.

• Scalable Number of Users: The system should grow
and scale as new users join. No new resources, other
than those the new user brings, should be required.

• Privacy: Users should be able to locate other users
without having to go outside the system. Messages be-
tween users must not leave the system or be intercept-
able by other users within the system.

• Multiple Realms: Users should be able to config-
ure their own instance of a communication system, in
which the participants are able to limit membership to
those users they wish to allow to participate. We re-
fer to each of these individual instances of a commu-
nication system as a realm. For example, a security
conscious company would typically utilize a private
realm for internal messages, with the option of inter-
acting with external realms to communicate with ex-
ternal users.

• Interconnection: While traffic within a realm should
be restricted to that realm, the design should support
interconnecting different realms when desirable, to al-
low users to communicate. To preserve the require-
ment above, connectivity must not be achieved by
merging realms.

• User Mobility Support: Users should be able
to use different clients while maintaining access
to user-specific information such as configura-
tion and buddy lists. Users should be able to quickly
move from one device to another, for example be-
tween home, office and mobile devices.

• Compatibility and Reuse: The system must be com-
patible with as much existing infrastructure as possi-
ble. Users should be able to use existing VoIP or IM
clients to connect and should be able to leverage equip-
ment such as VoIP gateways (used to connect to the
public phone network). As much existing code as pos-
sible should be used in the implementation.

4. P2P SIP-Based Solution

Our solution takes a P2P approach to SIP, resulting in a
distributed communications system with no central server.

Why SIP? SIP has emerged as the standard protocol
for VoIP. Although some systems use older standards or
proprietary mechanisms, the majority of new VoIP devel-
opment uses SIP. SIP with SIMPLE extensions is also ex-
tensively used by existing IM clients, for example in Mi-
crosoft’s MSN Messenger [11].

Using the open SIP/SIMPLE standard helps us meet our
requirement for Compatibility and Reuseand allows the sys-
tem to leverage open source stacks and applications [13,
26], as well as integrate with the tremendous number of ex-
isting SIP phones, SIMPLE IM clients, and SIP gateways.
Additionally, using the SIP/SIMPLE family of protocols,
gives us both IM and VoIP functionality—something not
possible with protocols such as H.323 or XMPP.

Why P2P? Our requirements of No Central Server, No
Central Naming Authority, Scalable Number of Users, and
User Mobility Support led to our decision to use P2P. Dy-
namic DNS [25, 28] has been suggested as one approach to
create a serverless communication system. While a dynamic
DNS approach addresses some of the issues we raised, there
are several scenarios in which such an approach is lacking.
Dynamic DNS requires a central DNS server be available.
In situations where there is no external connectivity, this is
not possible. Additionally, unless users maintain their own
DNS servers, this is not a service a typical end user has ac-
cess to. Finally, if device mobility is important, the latency
in making changes to DNS may be undesirable. The most
obvious alternative, and the one we have chosen to pursue,
is to take a P2P approach.

Why P2P over SIP? In order to provide the features
of SIP IM/VoIP, applications will need to incorporate a SIP
stack. To prevent applications from having to add a second
stack, we use SIP messages to carry the P2P traffic. Ad-
ditionally, there seems to be no clearly defined, standards-
based approach to implementing the messages for a P2P
system, while SIP is a mature, established protocol. Finally,
since many border devices (firewalls, traffic shapers, etc.)
are already able to recognize SIP traffic—as well as recog-
nizing and often banning P2P traffic—using SIP as the un-
derlying mechanism will ease deployment.

3



How scalable? An important question in evaluating
SOSIMPLE is its scalability. Our design preserves the SIP
architecture’s approach of sending the signaling through the
SIP infrastructure, while the media flows directly between
UAs. Using this approach in our design ensures that the P2P
overlay need only be used for resource location.

5. Related Work

WASTE was a short-lived P2P system for file sharing
and IM. Traffic within the overlay was encrypted against
outside snooping, but all traffic flooded all nodes, and all
nodes shared the same encryption key. WASTE was non-
standard, requiring a special client, and groups were limited
to 50 users.

Skype [23] allows users to make free phone calls be-
tween Internet users and offers public phone connectivity
for a fee. The system is proprietary and is not compatible
with non-Skype devices. Skype provides VoIP and IM ca-
pabilities. While partially P2P, username control, authenti-
cation, and some other services are controlled by Skype’s
central servers.

A similar and also non-standard project, vop2p [27], is
available open-source but is quite preliminary in nature and
seems not to have been active for over a year.

The EarthLink R&D group has created an application
called SIPshare [22], using SIP as the underlying transport
protocol for a file-sharing P2P system. Similarly, NUTSS
[5] is a project exploring how using SIP and related tech-
nologies might be useful as a general mechanism for trans-
port in P2P networks and in particular for NAT traver-
sal. In contrast, SOSIMPLE uses P2P to decentralize a
SIP/SIMPLE communications system.

Singh and Schulzrinne at Columbia University have re-
cently begun exploring a concept similar to ours [9]. Some
preliminary information about their research is available on
their webpage. Key differences between these approaches
include having different SIP mechanisms underlying the
system and taking a recursive, rather than iterative approach
to P2P search. In addition, their approach does not cur-
rently use user subscriptions and the resulting information
for routing, but instead relies exclusively on the traditional
Chord approach to choosing fingers.

6. The SOSIMPLE P2P SIP Architecture

Because our design has no central servers and nodes
communicate directly with one another, there are some dif-
ferences between our approach and traditional SIP. Peers
connect to a few other peers in the overlay network and
use these nodes as the destination for most SIP messages.
Nodes act both as UAs and as proxies simultaneously. Col-
lectively, the peers replace the functionality of SIP regis-

trars and proxies—each node being responsible for those
roles for some portion of the overlay.

6.1. Structure and Messages

Nodes are organized in a DHT based on Chord. Each
node is assigned a Node-ID created by hashing (using SHA-
1) the real IP address (found using a mechanism such as
STUN [18] if the node is behind a NAT) and appending a
port. We use the same algorithms used by Chord to main-
tain our overlay network, but as we discuss below, we use
SIP messages to implement the DHT operations. We im-
plement redundancy in the way as Chord, storing resources
on the node responsible for a particular resource as well as
k = 4 successor nodes.

SOSIMPLE nodes maintain a smaller number of finger
table entries than in Chord. Chord attempts to provide rapid
resource location and assumes that users will query many
times for many distinct items. To support this, Chord keeps
160 entries in their finger tables. While we desire reason-
able resource location time, users often message or call the
same user many times (for example co-workers, friends or
family members). Additionally, delays of even a full second
are insignificant when setting up a phone call or IM ses-
sion. As such, we maintain only 16 finger table entries for
routing but prefetch entries for contacts in the user’s buddy
list as well as caching previously contacted nodes for fu-
ture use.

All messages for maintaining the DHT, registering users,
locating resources, and establishing sessions are SIP mes-
sages. While SIP was not designed with supporting P2P
in mind, it was designed to be extensible by developers.
We have not needed to add new methods to SIP to imple-
ment P2P functionality but rather have only needed to de-
fine a number of new SIP headers. Defining new headers is
a common way of extending SIP to support new function-
ality while preserving compatibility with existing applica-
tions.

We use the SIP REGISTER message to pass the over-
lay information between nodes, as well as the original use
of sending user location information to a registrar (peer). To
distinguish between the two ways in which we user REG-
ISTER messages, we refer to the traditional use for regis-
tering users as User Registration. When using REGISTER
for DHT operations such as entering, leaving, or maintain-
ing the overlay, we refer to this as Node Registration. Both
of these uses are discussed below.

6.2. Node-level Operations

New nodes join the system by exchanging a number of
REGISTER messages. The new node uses its IP address,
as discussed above, to calculate a Node-ID. Once the new

4



Bootstrap node 
(Node-ID 023) 

 

Node B 
(Node-ID 445) 

Node C 
(Node-ID 520) 

 

(2) 302 w/Node B 

(1) REGISTER 

Joining node 
(Node-ID 503) 

(3) REGISTER 

(4) 302 w/Node C 

(5) REGISTER 

(6) 200 OK 

Joining node after join 
(Node-ID 503) 

 

Figure 1. An example of a new node with
Node-ID 503 joining the overlay.

node has joined the overlay, it will be responsible for stor-
ing information (user registrations) associated with the por-
tion of the overlay mapped to that calculated Node-ID. The
joining node must find the node currently responsible for
that region, insert itself into the overlay, and transfer the in-
formation for the region it will be responsible for from the
node presently storing that data.

We provide an example of a node join in Figure 1. When
a new node wishes to join the overlay it first must locate
some node already in the overlay, referred to as a bootstrap
node. Presently this node is located via out-of-band mecha-
nisms. The joining node calculates its Node-ID, 503 in our
example, and sends it in a REGISTER to the bootstrap node,
which has Node-ID 023 (1). Assuming that the bootstrap
node is not the node currently responsible for this region,
it responds with information about the nodes it knows near-
est to where the joining node will be placed in the overlay—
in this case, Node B, with Node-ID 445. This information
is passed back in our new headers within a SIP 302 Moved
Temporarily response (2). The joining node repeats the pro-
cess, using this nearer node as the new bootstrap node (3-4).
Finally, the joining node reaches the node that is currently
responsible for maintaining the appropriate section of the
overlay, In this case Node C, with Node-ID 520. Node C re-
sponds with a SIP 200 OK response including detailed in-
formation about nearby neighbors in the headers (5-6), al-
lowing the joining node to insert itself into the overlay.

Further messages, not shown, are sent between the join-
ing node and the node previously responsible to exchange
the actual information (registrations) in the overlay the new
node must store. Additionally, the new node will send mes-
sages to other nodes in the overlay to update their finger ta-
bles. Please see our IETF Internet-draft [1] for details of the

(1)
(2) 

Node A 

Node B 

Node C 

(3) 

(4) 
(5) 

(6) 

(7) 

Alice’s Node 

Bob’s Node 

Figure 2. Alice locates user Bob and estab-
lishes a communications session.

exact format of these messages. At this point the node has
joined the overlay and node registration is complete. Any
users associated with the node are not yet registered at this
point, but the user operations can now take place.

6.3. User Operations

User registration and resource location (finding users)
are decentralized to meet our requirements for No Central
Server and No Central Naming Authority . In order to regis-
ter, or to contact another user, the node responsible for stor-
ing that user’s information must be located. We will discuss
registration and establishing a session individually, but first
will address resource location in general. We illustrate the
resource location process in Figure 2.

When a node wishes to find the node responsible for a
particular user—either themselves or another user they wish
to contact—they begin by hashing the user name to produce
a Resource-ID. Because the user’s node is already properly
in the overlay (node registration has already occurred), the
node has a number of finger table entries pointing to nodes
within the overlay. In our example, Alice attempts to look
up a resource (Bob in our example). Alice’s node looks in
its finger table and finds the node with Node-ID nearest the
Resource-ID to be located. In this case, Node A. Alice’s
node sends a message to Node A (1). The exact type de-
pends on why Alice wants to locate the resource. Node A is
not responsible for that Resource-ID, so it sends a SIP 302
Moved Temporarily reply, including the node it thinks is
closest, Node B, in the headers (2). Alice’s node tries Node
B and again receives a reply with another node to try, in
this case Node C (3-4). Finally, Alice’s node tries Node C,
which is responsible for that resource (5). The result of that

5



request varies depending on why Alice wished to locate the
resource, so we now explore those alternatives.

If Alice was registering herself as a user within the over-
lay (user registration), the messages Alice’s UA sent (1, 3,
5) were of type REGISTER. When Node C receives this
message, it realizes that it is responsible for storing the reg-
istration on Alice’s behalf. Node C enters a mapping be-
tween Alice’s username and her IP address into its registra-
tion table and replies to Alice’s node with a 200 OK (6). At
this point, Alice is registered with the system.

If instead Alice was trying to call Bob, the messages Al-
ice’s UA sent (1, 3, 5) were either SIP INVITE messages to
establish a VoIP call or SIP MESSAGE messages contain-
ing IM data. When these messages reach the desired node,
in this case Node C, it looks in its registration table, de-
termines it is responsible for Bob’s registration, and looks
to see if a registration is present. If there is not, a 404 Not
Found is returned (6), indicating the user is not in the sys-
tem. If Bob is registered, Node C sends a 302 Moved Tem-
porarily reply, providing a contact directly for Bob (6).

Once Alice has the IP address of Bob’s UA, a call be-
tween these UAs can be established directly between the
nodes using conventional (non-P2P) SIP mechanisms with-
out involving the overlay (7). Alice’s node caches the in-
formation received from Node C and can use that for fu-
ture communications with Bob. Unless Bob or Alice log off
or move their nodes, possibly prompting a new search, the
overlay is not involved in any further messages or conver-
sations between Alice and Bob. Once this location informa-
tion is passed to the UA, the call establishment is unmod-
ified SIP—no P2P functions are required. The resource lo-
cation portion can be implemented in a thin adapter shim,
leaving the SIP UA unmodified. As in traditional SIP, the
media also flows directly between the endpoints.

Note that because Alice and Bob’s registration data is
likely to be stored on different nodes (i.e, their usernames
are likely to hash to Resource-IDs that map to different
nodes), “Node C” in the register and session establishment
example above would most likely be different nodes.

When a P2P UA starts, the user’s buddy or contact list
is consulted. The SIP SUBSCRIBE/NOTIFY mechanism
(again, using P2P mechanisms to locate the resources) is
used to attempt to establish subscriptions with these users.
These subscriptions track the availability of the buddies.
If the buddy is not connected, the subscription will be at-
tempted later. The address of the node responsible for the
user information (not the address of the UA itself) will also
be added to the node’s finger table, as described above. The
buddy list is stored as an encrypted file within the overlay,
to meet our requirement for User Mobility Support . As the
SIP PUBLISH draft [12] comes into wider use, we will sup-
port this standard.

7. Current Research, Future Work and Open
Issues

There are several key areas of research that arise from
designing a P2P SIP-based communications system.

7.1. Security and User Authentication

Perhaps the largest open question is how to prop-
erly secure a distributed P2P communications system.
SIP/SIMPLE offers private-key mechanisms for authen-
tication between UAs and proxies, and for end-to-end
encryption [8]. A P2P architecture, however, requires a sys-
tem that assumes no trust between the user and the system
with which they are authenticating.

We are currently evaluating a number of possible ap-
proaches. Ultimately, we expect that more than one ap-
proach will prove desirable, and different instances of P2P
communications systems will weigh the relative strengths
and weaknesses of different approaches and choose the one
most appropriate for the deployment. In the case of ad-hoc
or transient networks, no verification may be required or de-
sirable. The mechanisms we have explored include:

• Simply storing the public portion of a user’s key in the
overlay. This mechanism provides no guarantee as to
the identity of a user, but once the certificate has been
obtained one can use it to ensure that future conver-
sations are with the same individual as previous con-
versations. This mechanism allows communication be-
tween nodes to be encrypted using this certificate. No
name enforcement is used in this scheme—multiple
users could use the same name, and one would need
to use certificates and previous conversations to dis-
tinguish users. This technique is best when combined
with others below.

• Email verification of user identities requires user
names be valid email addresses. A user attempt-
ing to register is challenged by the node handling
the registration to provide a key, which the node
sends to the user in email. While this approach en-
sures the uniqueness of usernames, it has a number of
shortcomings. A corrupted node in a single email chal-
lenge system can mount a DOS attack against users
for which they are responsible. Note however, that be-
cause a Node-ID is tied to an IP address, attacks
on a specific user are difficult, even with a sin-
gle party email challenge. A more serious drawback
is that this system will not work without email ac-
cess. Additionally, we would need to solve the prob-
lem of trusting other nodes to have properly verified
IDs, which is a major security shortcoming.

6



• The PGP web of trust model is also an alternative.
In such a model, a user wishing to join the overlay
would create a certificate and ask one or more other
users to “verify” the new user’s identity by signing the
new certificate. By following this path of signed cer-
tificates, the node receiving the register can ascertain
that the registering user really is who they say they are.
The system could be constructed so that only signa-
tures from nodes inside the overlay are considered, or
conventional PGP mechanisms could be used, which
could require access to systems outside the overlay.

• Centralized certificate stores could also be used. In
such a scenario a central authority issues a certifi-
cate to a user. Registrations are confirmed by verify-
ing the identity using standard certificate-chain verifi-
cation mechanisms, such as X.509. Again, this idea re-
quires some centralized authority to be consulted. This
is very similar to the way that email signatures and en-
cryption are handled today.

• In many cases, attacks such as the Sybil attack [3] can
be used against the approaches defined above. Compu-
tational puzzles can be used as a rate limiting mecha-
nism against this. Registrations must be accompanied
by a solved puzzle, which is associated with the user
ID that is being created. Many alternatives for such
puzzles exist, one need only ensure that they can be
verified trivially. Jennings has proposed such a stan-
dard for SIP clients in a recent Internet-draft [7].

None of these mechanisms using public key authentica-
tion are standard SIP. Therefore, they must be implemented
between our modified nodes, and public key methods or no
security must still be used between the adapters/proxies and
non-modified UAs. There are efforts underway within the
IETF to standardize end-to-end authentication and we will
attempt to incorporate these as they emerge.

7.2. NAT Traversal

While NAT traversal is a topic that has been well ex-
plored in the IETF, for example with the STUN, TURN,
and ICE drafts [15, 16, 18], how this is best implemented
in a P2P system is an open question. STUN and TURN
both require access to a public server to determine pub-
lic IP addresses. We are currently evaluating what portion
of users would likely have nodes on publicly routable ad-
dresses. If a sufficient number of nodes are likely to be pub-
licly routable, incorporating STUN and TURN servers di-
rectly into the P2P nodes would be an attractive option.
If few of the nodes will have public addresses, centralized
STUN/TURN servers will need to be used instead. In ad-
dition, anycast may be a useful mechanism for locating the
servers needed for NAT traversal.

7.3. Routing

There are a number of issues relating to routing we are
currently exploring.

• Finger table design is a key parameter for SOSIMPLE.
We are currently working with simulations and experi-
ments using our implementation to help determine rea-
sonable parameters. Because communications session
are established with a new entity less frequently than
a file-sharing application searches for files, early re-
sults indicate that fewer fingers are needed than are
used in Chord, particularly if fingers are kept pointing
to buddy/contact list entries and recent contacts. Cur-
rent work focuses on defining guidelines for the num-
ber of fingers based on overlay size, as well as algo-
rithms to adaptively change the finger table size based
on the number and distribution of buddy/contact fin-
gers.

• Social routing is another concept being explored.
SPROUT [10] explored using social routing for P2P.
We are investigating how this applies to communica-
tions systems. Because users frequently have buddies
on their lists that have similar interests, a communica-
tions system should be an ideal candidate for a P2P ap-
proach that uses not only DHT mechanisms but also
social connections to route messages. We are inves-
tigating the costs of routing using traditional P2P
mechanisms, P2P mechanics with fingers to con-
tacts (our current approach), and systems that use
the overlay as well as queries using social network-
ing.

• The underlying P2P architecture is also an area that
we are currently evaluating. While we presently use a
system very much like Chord and are evaluating so-
cial network extensions to this, we also are working to
evaluate other P2P mechanisms, such as those used in
Pastry or Tapestry [19, 29].

• Hierarchical routing involves interfacing multiple in-
dependent P2P SIP realms. For example, different en-
terprises and organizations will be running different
realms to keep their communications internal. These
users may still wish to communicate with users in other
realms. Bridging these will be critical and is a research
area we have not yet begun to explore.

• Interfacing with existing SIP systems also merits more
work. Our current design allows reuse of unmodified
SIP clients within our system, but we also need to fi-
nalize how calls to non-P2P traditional endpoints are
handled. We don’t see this as a research problem, but
it is a technical issue remaining to be solved.

7



7.4. Persistent Storage and Abuse Prevention

One final area of future research is investigating per-
sistent storage. Persistent storage is needed for a num-
ber of purposes—storing public keys, storing buddy lists,
voicemail, and storing configuration information. These
functions must be supported without allowing the use of
SOSIMPLE as a mechanism for illicit file sharing.

8. Conclusions and Implementation Status

We have worked carefully to ensure that SOSIMPLE
meets the requirements for a practical P2P VoIP/IM system.
We have removed dependence on a central proxy server,
while preserving most of the advantages of a proxy-based
system. SOSIMPLE offers compatibility in terms of reuse
of existing SIP clients as well as the ability to interface to
established SIP systems. Adapting existing technologies re-
duces barriers to learning the technology, as well as reduc-
ing the effort needed to create SOSIMPLE applications. We
have taken an approach to security that allows for authenti-
cation without requiring a fully secure P2P system. In short,
SOSIMPLE meets the need for a more distributed commu-
nication system.

We have implemented the SOSIMPLE architecture de-
scribed here for experimentation and use for internal com-
munications within our research group.

References

[1] D. A. Bryan and C. Jennings. draft-bryan-
sipping-p2p-01. http://www.ietf.org/internet-drafts/
draft-bryan-sipping-p2p-01.txt, July 2005.

[2] B. Campbell, J. Rosenberg, H. Schulzrinne, C. Huitema, and
D. Gurle. RFC 3428 - session initiation protocol (SIP) exten-
sion for instant messaging. http://www.ietf.org/rfc/rfc3428.
txt, Dec. 2002.

[3] J. R. Douceur. The sybil attack. In Proceedings of the
IPTPS02 Workshop, Cambridge, MA, USA, Mar 2002.

[4] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. RFC 2616 - hypertext trans-
fer protocol - HTTP/1.1. http://www.ietf.org/rfc/rfc2616.txt,
June 1999.

[5] S. Guha, Y. Takeda, and P. Francis. NUTSS: A SIP-based
approach to UDP and TCP network connectivity. In SIG-
COMM ’04 Workshops, Portland, OR, Aug 2004.

[6] H. Handley and V. Jacobson. RFC 2327 - SDP: session de-
scription protocol. http://www.ietf.org/rfc/rfc2327.txt, Apr.
1998.

[7] C. Jennings. draft-jennings-sip-hashcash-01. http://www.
ietf.org/internet-drafts/draft-jennings-sip-hashcash-01.txt,
Feb. 2005.

[8] C. Jennings, J. Peterson, and M. Watson. RFC 3325 - pri-
vate extensions to the session initiaion protocol (SIP) for as-

serted identity within trusted networks. http://www.ietf.org/
rfc/rfc3325.txt, Nov. 2002.

[9] K. Singh and H. Shulzrinne. http://www1.cs.columbia.edu/
∼kns10/research/p2p-sip.

[10] S. Marti, P. Ganesan, and H. Garcia-Molina. Sprout: P2p
routing with social networks. In First International Work-
shop on Peer-to-Peer Computing and Databases (P2P&DB
2004), Mar 2004.

[11] Microsoft MSN Messenger. http://messenger.msn.com.
[12] A. Niemi. draft-ietf-sip-publish-04. http://www.ietf.org/

internet-drafts/draft-ietf-sip-publish-04.txt, May 2004.
[13] ReSIProcate Project. http://www.resiprocate.org.
[14] J. Rosenberg. RFC 3856 - a presence event package for

the session initiation protocol (SIP). http://www.ietf.org/rfc/
rfc3856.txt, Aug. 2004.

[15] J. Rosenberg. draft-rosenberg-mmusic-ice-04. http:
//www.ietf.org/internet-drafts/draft-ietf-mmusic-ice-04.txt,
Feb. 2005.

[16] J. Rosenberg, R. Mahy, and C. Huitema. draft-rosenberg-
midcom-turn-07. http://www.ietf.org/internet-drafts/
draft-rosenberg-midcom-turn-07.txt, Feb. 2005.

[17] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston,
J. Peterson, R. Sparks, M. Handley, and E. Schooler. RFC
3261 - SIP : Session initiation protocol. http://www.ietf.org/
rfc/rfc3261.txt, June 2002.

[18] J. Rosenberg, J. Winberger, C. Huitema, and R. Mahy. RFC
3489 - STUN : Simple traversal of user datagram protocol
(UDP). http://www.ietf.org/rfc/rfc3489.txt, Mar. 2003.

[19] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer sys-
tems. In IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware), pages 329–350, 2001.

[20] P. Saint-Andre. RFC 3920-3923 – IETF XMPP RFCs . http:
//www.ietf.org, Oct. 2004.

[21] H. Shulzrinne, S. Casner, R. Frederick, and V. Jacobson.
RFC 1889 - RTP: a transport protocol for real-time appli-
cations. http://www.ietf.org/rfc/rfc1889.txt, Jan. 1996.

[22] SIPShare Project. http://www.research.earthlink.net/p2p/.
[23] Skype Technologies, S.A. http://www.skype.org/.
[24] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-

akrishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. In Proceedings of ACM SIGCOMM
2001, pages 149–160. ACM Press, 2001.

[25] P. Vixie, S. Thomson, Y. Rekhter, and J. Bound. RFC 2136 -
dynamic updates in the domain name system DNS UPDATE.
http://www.ietf.org/rfc/rfc2136.txt, Apr. 1997.

[26] VOCAL Project. http://www.vovida.org.
[27] vop2p Project. http://vop2p.jxta.org.
[28] B. Wellington. RFC 3007 - secure domain name system

(DNS) dynamic update. http://www.ietf.org/rfc/rfc3007.txt,
Nov. 2000.

[29] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph,
and J. D. Kubiatowicz. Tapestry: A global-scale overlay for
rapid service deployment. IEEE Journal on Selected Areas
in Communications, 2003. Special Issue on Service Overlay
Networks.

8


