
College of William & Mary
Computer Science Department

Technical Report
WM-CS-2006-03

June 1, 2006

Challenges of DHT Design for a Public Communications System

David A. Bryan Marcia Zangrilli Bruce B. Lowekamp

Abstract

Communications systems, encompassing VoIP, IM, and other personal media, present different chal-
lenges for P2P environments than other P2P applications. In particular, reliable communication implies that
each resource (person) is unique and must be reliably located, without false negatives. The system must
function in the presence of NATs, which create non-transitive connectivity, and must be resilient against
DoS attacks that attempt to disrupt its routing properties or DoS a particular person. We have designed
and implemented a P2P communications system using an extension of the Chord algorithm as a resource
location service. In this paper we present the design tradeoffs necessary to meet the requirements of a re-
liable communications system. In particular, the practical issues of non-transitive routing, NATs used by
residential endpoints, and the prevention of DoS attacks are more critical than strict performance metrics in
selecting DHT identifier, topology, and routing algorithms. Where a central authority exists, certificates can
be stored in the overlay and allow more efficient DHT algorithms to be used, but securing an open network
with NATs requires appropriate Node-ID, replica placement, and routing algorithms.

This work is supported by the Cisco University Research Program. David A. Bryan is partially supported
by the Virginia Space Grant Consortium.



Challenges of DHT Design for a Public Communications System

Abstract

Communications systems, encompassing VoIP, IM, and
other personal media, present different challenges for P2P
environments than other P2P applications. In particular,
reliable communication implies that each resource (person)
is unique and must be reliably located, without false neg-
atives. The system must function in the presence of NATs,
which create non-transitive connectivity, and must be re-
silient against DoS attacks that attempt to disrupt its rout-
ing properties or DoS a particular person. We have de-
signed and implemented a P2P communications system us-
ing an extension of the Chord algorithm as a resource loca-
tion service. In this paper we present the design tradeoffs
necessary to meet the requirements of a reliable communi-
cations system. In particular, the practical issues of non-
transitive routing, NATs used by residential endpoints, and
the prevention of DoS attacks are more critical than strict
performance metrics in selecting DHT identifier, topology,
and routing algorithms. Where a central authority exists,
certificates can be stored in the overlay and allow more ef-
ficient DHT algorithms to be used, but securing an open
network with NATs requires appropriate Node-ID, replica
placement, and routing algorithms.

1. Introduction

Applying P2P technologies to communications systems
has been gaining significant interest recently. Communica-
tions systems are, in some sense, a natural application for
P2P because the dominant standard protocol for VoIP and
IM, SIP [22], is already designed to support intelligent end-
points capable of end-to-end media connections. The chal-
lenge is to replace the client-server based registration and
naming system [21] with a P2P-based distributed location
service. However, because communications systems have
different service requirements than other P2P applications,
modifications to the algorithms are required.

1.1 P2P Communications

Whereas many P2P applications are built around
anonymity, a fundamental requirement of communications
systems is the ability to identify users and verify their iden-
tities. In filesharing applications there may be many nodes

that contain replicas of the resource we are looking for. In
communications systems, such as telephony or IM, there is
usually a specific person who is being sought, and a close
match just will not work.

The lack of anonymity and availability of the desired re-
source (person) at only a single location, coupled with the
reliability requirements people expect out of their commu-
nications devices, provide the requirement that

• the P2P algorithm must report the correct location of
a resource, if present. False negatives are
unacceptable.

The requirement to avoid false negatives has implications
that essentially require a DHT or other structured P2P algo-
rithm to be used. Furthermore, the algorithm must contain
sufficient protection from an attacker manipulating the over-
lay routing to gain control of a particular portion of identi-
fier space to DoS attack against a particular user.

On the other hand, false positives (reporting that a per-
son is present in the network, when they are not) are not a
problem because the SIP user-agents can determine that the
desired contact is not available. However, this is only one
of many scenarios where positive identification of users is
necessary

• A user-agent must be able to confirm the identity of
the user contacted

This requirement is typically met through public-key cryp-
tography, and may be assisted by the DHT, but does not rely
on the DHT’s integrity.

Deploying a P2P communications systems dictates that
it must support the full range of last-mile networking tech-
nologies deployed on the Internet. Although file-sharing
networks may be comprised of significant numbers of col-
lege students on relatively open networks, the anticipated
market for communications services include both consumer
broadband networks and small businesses, which are typ-
ically behind Network Address Translators. NATs intro-
duce the problem of non-transitive connectivity. Freedman
et al [9] explored some issues of Non-Transitivity in a Planet
Lab based system. In such a system, the cause of these non-
transitive connections is generally ephemeral problems or
difficulties in Internet1 systems communicating with Inter-
net2 systems. In contrast, in Internet deployed communi-
cations systems, particularly those targeted at consumers,
a large fraction of the users are likely behind NATs, and
non-transitive connectivity is the norm rather than the ex-
ception.



• The DHT must provide connectivity between NATed
nodes and make use of the in the overlay to the extent
possible.

While super-nodes can be used to provide connectivity, a
DHT achieves its best functionality and scalability when all
nodes are able to provide services as many services as pos-
sible to other peers.

Finally, as with any other publicly deployed network, the
network must be resilient against DoS attacks. In particu-
lar, a P2P communications network is subject to both gen-
eral DoS attacks against the entire overlay and DoS attacks
targeting specific users. Therefore,

• the DHT algorithm must not amplify DoS attacks and
• the DHT algorithm must prevent an attacker from

gaining control of a particular portion of the identifier
space

1.2 Contributions

In this paper we present the approaches we have devel-
oped to address the practical issues of deploying P2P com-
munications systems across real-world mixes of residential,
commercial, and academic networks. In particular:

• While standards are being developed for NAT
hole-punching, securing a system using NATed nodes
remains challenging, as traditional IP-address
hashing can facilitate several attacks. In Section 3 we
propose a secure scheme for Node-ID selection and a
corresponding replication scheme to assure data
integrity.

• The routing scheme used by a P2P algorithm is
significant to both its performance and resistance
against attacks. In Section 4 we review the
characteristics of two recursive and one iterative
routing algorithm and discuss the costs, benefits, and
selection criteria of each.

• Whereas commercial P2P communications systems
typically rely on central servers, Section 5 presents a
scheme where certification authorities (CA) can
achieve equivalent results without any centralized
operations after a one-time registration.

A key observation we make throughout the paper is that
there is no single right answer to any of these issues. De-
pending on the degree of trust in the participants (and cor-
responding openness of the network), control over the soft-
ware, and availability of a central authority, different deci-
sions must be made to preserve the integrity, scalability, and
performance of the network.

2. Background

Our discussion will focus on structured P2P networks, as
unstructured networks cannot generally meet our require-

ment of no false negatives. Although our paper focuses on
extensions to the Chord algorithm [25], most discussions
apply to any of the DHT-based solutions.

Most communications systems to-date have been
based on client-server principles. The traditional
phone network—the public switched telephone network
(PSTN)—concentrated control in the core of the network.
More recent communications protocols, such as the IETF
SIP protocol for VoIP and instant messaging [6, 22], have
moved more control to the endpoints. SIP allows endpoints
to set up direct connections to exchange media (phone
calls), although in practice the signalling is typically routed
through proxies. Media often flows directly between nodes,
but may also be proxied to solve a variety of routing, NAT
penetration, and other issues. Furthermore, SIP clients re-
quire servers to act as registrars and proxies to register their
presence and to locate other users.

2.1 P2P Communications Systems

Because SIP places much intelligence in the endpoints
and media usually flows directly between the devices, by-
passing intermediaries. SIP is often argued to be a P2P
application. However, current work to create “P2PSIP,”
including this work and the efforts of the nascent IETF
P2PSIP working group, use the term P2P in the traditional
academic sense. Not only can devices that locate each other
communicate directly, but the centralized resources needed
at runtime are reduced or completely removed, and instead
the endpoints rely on distributed resource location, NAT
traversal, and possibly even security primitives.

The most well-known P2P communications system is
Skype [24], which offers free computer-to-computer calls
and charges for computer to PSTN calls. Skype is a com-
pletely closed system, and most of what is known about it
has been discovered by reverse engineering [1, 3]. The pro-
tocol used between Skype devices is encrypted, and the bi-
naries are obfuscated, making this more difficult. Skype is a
hybrid system, relying on centralized authentication servers
to establish initial identity, and possibly for resource loca-
tion. Skype uses a super-node architecture with media re-
lays to enable NAT traversal. Peers are occasionally ele-
vated to this status (often much to the user’s surprise when
bandwidth suddenly increases), and it is thought that Skype
provisions its own nodes to act as super-nodes as well.
While there have been some offerings from licensed third
parties, Skype’s proprietary nature means that in general,
third parities cannot create Skype clients.

At about the same time Skype was unveiled, work was
beginning on removing the central servers from the SIP ar-
chitecture. In particular, two projects, the SIPpeer project
at Columbia University [23] and the SOSIMPLE project at
William & Mary [4, 5] have emerged. The two projects

2



have taken somewhat similar approaches to the problem,
and each has experimented with a number of implementa-
tions.

Earlier versions of the SIPpeer project and the current
SOSIMPLE implementation take an approach often called
“P2P over SIP.” Both are based on a modification of Chord,
and use SIP messages to convey the actual DHT routing in-
formation between nodes, as well as for establishing com-
munications sessions between users. Since SIP was de-
signed to be extensible, both take advantage of this and use
a modified SIP REGISTER message, traditionally to store
location information with the central server, to exchange
the DHT information. SIPpeer and SOSIMPLE differ in
a number of aspects, the most critical being that SIPpeer is
a recursive algorithm, with each node acting as a proxy of
messages, whereas SOSIMPLE uses an iterative algorithm,
each node redirecting searches instead. We will discuss this
difference in more detail in Section 4.

More recently, the researchers at Columbia have also be-
gun to explore an alternate technique that uses an external
DHT, rather than using SIP messages and creating a new
DHT [2]. OpenDHT [16] is being used as the underlying
DHT. While this has some disadvantages for a deployed
system, most notably requiring a second stack (often prob-
lematic on small embedded communications devices) and
not working in completely disconnected networks, it allows
for rapid deployment and testing of new features and tech-
niques for P2PSIP research.

Additionally, there have been a few attempts at bring-
ing P2PSIP in the commercial space as well, although it is
often unclear what is meant by “P2P” in commercial offer-
ings. Some of these offerings mean P2P in the earlier sense,
simply that media flows between the devices directly. How-
ever a few companies claim to offer P2P systems, includ-
ing Avaya’s one-X and Popular Telephony’s Peerio system.
Avaya’s product is believed to be based on a broadcast and
mirror approach, rather than a DHT. Neither the Avaya or
Peerio protocols have been openly discussed, so how they
work is something of a mystery, and the products do not
interoperate with one another. None of these systems is in-
tended for Internet-scale deployment, but rather for small
office scenarios, where removing complexity of a server,
rather than scalability, is the key motivation.

2.2 NATs and P2P

Despite the efforts of the IAB and IETF, current Inter-
net architecture now prominently relies on NATs to estab-
lish a multi-level network where groups of nodes (in a sin-
gle home or business) share a single (or small number of)
globally routable IP address. Behind the NAT private, non-
routable addresses are used. NATs create particular chal-
lenges for any applications that require connections placed

to endpoints—such as SIP or P2P applications, because the
internal nodes cannot use what they believe to be their IP
address as an identity on the public Internet.

The most common technique for connecting machines
behind NATs is hole-punching [8], which relies on the be-
havior of most NATs to allow external connections on a port
on which an internal node has already sent an outgoing mes-
sage. P2P systems generally support have used some com-
bination of hole-punching and relaying to achieve full com-
munication.

The IETF has recently begun focusing more attention on
NATs, resulting in standards and Internet-Drafts for NAT
behavior [11], STUN to support hole-punching [19] and
TURN for relaying [20]. A recent Internet-Draft, ICE [18],
specifies how to combine these protocols to establish the
best connection possible between two peers. NUTSS [10]
is a proposal from the P2P community to use these tools to
allow for NAT traversal in generalized P2P systems.

3. Challenges with NATs for P2P

Although there are still many practical issues with ap-
plying the existing NAT-traversal standards to P2P connec-
tions, significant progress has been made in addressing the
hole-punching issues. Once connectivity is assured, how-
ever, the issue of preserving the security of the overlay in
the presence of nodes that do not have a readily identifiable
global IP address becomes significant.

3.1 Alternate Node-ID Generation

Traditional Chord generates Node-IDs by hashing IP ad-
dresses into a 160-bit space using SHA-1. This approach
fails in the presence of NATs in systems. A machine run-
ning behind a NAT will have a private IP address. If two
nodes communicating with one another are both behind
NATs, it is actually possible (and in fact if both are home
users using the same brand of NAT, likely) that both sides
of the conversation will have the same private IP address,
and thus attempt to use the same Node-ID. External enti-
ties attempting to verify that the IP address and the hashed
Node-ID agree will fail, as they will instead see the source
IP address as the public address of the NAT.

Techniques such as STUN can be used to to identify the
public IP address of the NAT, but even in this case there
is a problem. If more than one machine is located behind
the NAT, then both machines share the same public IP ad-
dress. Multiple machines behind the NAT will still hash
this address to produce the same Node-ID. It is clear that
the approach taken by Chord to this problem won’t work.

A naive solution would be to append the port number to
the address before hashing, producing a different Node-ID

3



for each node behind the NAT, but this approach is prob-
lematic. If a system is built using this approach, an attacker
wishing to place themselves in a particular location in the
overlay in order to attack information stored there could
hash the 64K host/port pairs for that NAT’s global IP ad-
dress in advance, and then select from the resulting Node-
IDs the closest one to the information to be attacked. If we
assume that an attacker could choose from approximately
64K port choices for each IP, a network with several hun-
dred thousand nodes could be attacked with a high proba-
bility of success with only a few available IP addresses.

Our solution to this problem is to generate an initial
Node-ID by hashing only the node’s globally routable IP
address. Then we replace the least significant 16 bits of the
Node-ID with the port number of the client. This allows
multiple clients to be behind a NAT, each having a unique
Node-ID. In this approach, a single user wishing to mount
a Sybil attack can still produce many nodes, again one for
each port and IP, but the nodes within one IP address will all
be contiguous on the overlay—the last 16 bits of a 160-bit
address space are rarely needed to separate the Node-IDs of
randomly picked IP addresses. The result of narrowing the
nodes to this region is that the portion of the ring (and thus
the registrations they are responsible for storing) they are
able to attack is greatly reduced.

Our approach is not foolproof, but it greatly increases the
difficulties of generating arbitrary Node-IDs. An attacker
that manages a large ISP or other entity would have access
to multiple IP addresses, but we believe such an attack to
be sufficiently unlikely as to be ignorable for practical pur-
poses. If IPv6 is deployed, we may need to reconsider how
IP addresses are mapped to Node-IDs, because if ISPs give
end-users (or their NIC MACs) control over significant por-
tions of their IPv6 address, we may need to reevaluate the
portion of the IP addressed used for the Node-ID.

For smaller networks, a stronger scheme is to generate
Node-IDs using an HMAC-SHA-1 scheme, where a shared
secret between all nodes is used as a seed together with the
IP address to generate Node-IDs. This allows the load of
the DHT to be distributed randomly across all participating
nodes, but scales only as far as a single shared secret can be
distributed and kept secret.

3.2 Redundancy with NAT Node-IDs

With this change, the approach to redundancy taken by
Chord must be revisited. Chord places redundant storage of
information on sequential nodes. That is, in addition to stor-
ing on the nearest node, some number of the nearest node’s
successors also store the information to improve reliability.
This approach is less desirable with our solution, since an
arbitrary number of sequential nodes can be obtained sim-
ply by selecting different port numbers. While the user can-

not control exactly what information they compromise, a
rogue node would be able to disrupt the information stored
for some user, including the replicas.

In place of this approach, we instead use a replica key.
When data is hashed to be stored, the keyword is hashed to
form the primary location, as is normally done in Chord.
In addition, the keyword concatenated with one or more
replica strings (or numbers), and hashed again to find the re-
dundant locations. These replica strings are widely known
to all nodes in the overlay, but adding them to the hashed
value ensures that the replicas are distributed around the
ring, limiting the ability of one user to attack the data and its
replicas. A strategy of comparing the results returned from
both the primary location and the replicas using a consen-
sus algorithm can also be used to detect compromised data
stored in the overlay. Comparison algorithms in DHTs have
been discussed by others, most notably [15, 17]

4. Iterative vs. Recursive Queries

One major decision that needs to be made in the design
of a P2P routing algorithm is a decision about whether in-
formation will be routed through the P2P network in an it-
erative or recursive fashion. In general, most designs have
opted for recursive techniques, arguing that they are more
efficient, usually in the sense of reducing the total num-
ber of messages transmitted and reducing the correspond-
ing latency between sending the messages and obtaining a
response.

Our work in developing protocols for large scale deploy-
ments has shown the decision is not so clear. Recursive al-
gorithms may only offer the improvements in efficiency un-
der certain circumstances, and these may not exist in prac-
tice in networks with a large number of NATs. Iterative
algorithms offer robustness to a number of security attacks
that recursive algorithms are vulnerable to. Finally, a some-
what less efficient variation of a recursive algorithm may
still pose security risks, but offers advantages in traversing
NATs.

4.1. Defining Different Algorithms

In a recursive query, the node initiating the query sends
a message to the node it knows that is nearest to the target.
If that contacted node does not have the resource, it will
forward the query to the nearest node to the target it knows,
and the process repeats until the target is reached.

After sending the request forward, recursive algorithms
can route the response in two ways. In the first, the response
is symmetrically routed back through the overlay follow-
ing the same path, a mechanism we call Recursive Overlay
Response Routing (RORR). Alternatively, once the destina-
tion is reached, the response can be sent directly back to the

4



6 5 4

321

Figure 1. An RORR Query Flow

321

4

Figure 2. An RDRR Query Flow

originating node, which we call Recursive Direct Response
Routing (RDRR). In Figures 1 and 2, we illustrate examples
of the two recursive queries.

In contrast, an iterative query as shown in Figure 3 has
the initiating node sending the query to an intermediary
node. Rather than forwarding the message along, the in-
termediary instead replies directly to the initiator node with
a nearer location. The initiator then sends a new request to
the nearer node recommended. The process continues until
the target node is reached.

Table 1 lists the total messages passed in a query involv-
ing i nodes (including the source and target). The RDRR
technique is the most efficient in this case, but there are
some drawbacks.

4.2. Implications for NAT Traversal

As discussed earlier, the introduction of NATs to the sys-
tem lead to systemic non-transitivity in the network. Recur-
sive algorithms offer a number of advantages when NATs
are present. For each other node with which a node must
communicate, NAT hole punching techniques must be used
to establish to path between the nodes, and in many cases,
keep alive messages need to be exchanged if the hole is to be
maintained. With an RORR algorithm, a node establishes a

6

5

4

3

2

1

Figure 3. An Iterative Query Flow

connection with only the neighbor nodes, and has no need
to establish new connections on the fly, since responses are
routed back through the same connections.

In Table 1, we show the total number of new NAT punch-
ing connections that must be made by all nodes for the
query, assuming every node is behind a NAT. We assume
that the connections to immediate neighbors have already
been established during periodic DHT maintenance, and do
not include these in our count. We further assume that the
first query is always sent to a neighbor, as is the case in
systems such as Chord.

For RORR, the fact that routing occurs over the over-
lay and is proxied from node to node via closest neighbor
means no new connections must be created at all. As long
as nodes maintain connections to their neighboring nodes,
there is no need to punch additional holes. With RDRR,
the situation is similar, however in order to directly route
the return message, a new connection will need to be estab-
lished (except in the case that query source and target are
direct neighbors), one additional connection must be estab-
lished, and the cost of this hole-punched connection (which
may greatly exceed the cost of a connection to an estab-
lished neighbor) must be included in the cost of the RDRR
routing.

For an iterative algorithm, many more connections must
be established. While the first node where a message is sent
is the direct neighbor of the query source, all subsequent
connections are with non-neighbors, and a NAT connection
must be opened. In all,i − 1 new connections must be es-
tablished.

Clearly in networks where NATs are the norm, a recur-
sive technique reduces the number of new connections that
must be made through the NATs to enable communications,
with RORR being the most efficient.

4.3 DoS Attacks and Parallelization

Recursive routing simplifies NAT traversal, but intro-
duces the hazard of DoS amplification attacks. An Internet-
scale P2P communications system may have hundreds of
thousands of nodes, but because each resource is unique,
searches must be completed all the way to the node contain-
ing the registration, rather than only to the nearest replica as
in other P2P applications. The result is that each node in
the DHT expects to route many searches on behalf of nodes
with which they have had no previous contact, and those
searches will ultimately terminate at nodes with which they
have never contacted.

In such a system, recursive algorithms allow other nodes
to serve as a surrogates for DoS attacks against a particular
node. Assume an attackerA can send requests to intermedi-
ate nodesI searching for target nodeT . In an iterative case,
the intermediate nodeI replies with a close node to use to

5



Table 1. Comparison of costs associated with various routing algorithms

Algorithm Total Messages Passed Number of NAT Messages Processed byDoS Risk?
Holes to be Punched Interior Nodes

RORR 2(i − 1) 0 4 Yes
RDRR i 1 2 Yes

Iterative 2(i − 1) i − 1 2 No

T

I

I

I

A T

I

I

I

A

Figure 4. Surrogate Attackers in a Recursive
Approach

attempt to reachT . The attacker is still forced to directly
send toT if they wish to interfere with that node. In the
recursive approach, attackerA can send to many intermedi-
ate nodesI, all of which will relay the message, eventually
reachingT . In effect, the intermediate nodes have served
as a DoS surrogate forA and may assist in obfuscating the
source of the attack. The ability ofA to multiply the attack
is limited only by the number of intermediate nodesI that
are reachable fromA.

If we take Chord as an example, each node haslg(m) im-
mediate neighbors, wherem is the size of the address space.
If the attacker sends to every neighbor,lg(m) messages will
reach the target. For Chord,m is 160. All of these messages
will appear to come from separate sources, requiring addi-
tional network processing and making blocking the attack
more difficult than if the messages come directly from one
attacking node.

Many algorithms, such as EpiChord or Kademlia [13,
14], improve average case performance by doing parallel
searches (although these are iterative for a number of rea-
sons, including the one outlined below). Parallelizing in a
recursive algorithm would lead to an immense DoS mul-
tiplication factor, and tremendous message overhead. If a
node sends the request tok neighbors, and a recursive algo-
rithm parallelizes by sending to on averagep nodes at each
level of the search, and further assuming that queries have
a worst case depth oflg(N), the number of messagesMT

arriving at the targetT can in the worst case be:

MT = k plg(N) (1)

For even small values ofk and small branching factors
such as thep = 3 used by EpiChord, taking a recursive

approach is impractical. If we assume a network of 100,000,
and a non-hostile query withk = 3, we have:

MT = 3 316
≈ 129 million (2)

Clearly parallelization cannot be combined with a recur-
sive algorithm.

4.4 Fairness

Additionally, recursive algorithms present a fairness
problem. As shown in Table 1, and can be seen by exam-
ining Figures 1–3, intermediate nodes in an RORR network
either send or receive 4 messages each, while the source
and target only deal with 2. Both the RDRR and Iterative
algorithms require intermediate nodes to handle only two
messages, reducing the burden on uninvolved parties. This
is particularly important in communications networks, since
these devices (often phones) have limited processing power.

In short, neither iterative nor recursive routing is a uni-
versal solution. In a small or closed system, where attack-
ing nodes are prevented by other means, the most efficient
scheme should be chosen, which is RORR or RDRR de-
pending on whether the searching node is behind a NAT
or firewall (that information can easily be indicated in the
query). In open Internet-scale systems, despite its cost, it-
erative routing must be used to defeat DoS amplification
attacks. A more advanced system might determine which
approach to use at run-time depending on its current load.

5. Using an Offline CA for Security

One technique we have been exploring for securing an
overlay network involves having a centralized certificate au-
thority (CA) issue a certificate to each user and node in
the overlay. Without a CA, public-key cryptography can
be used to establish repeated identity (once you communi-
cate with a user for the first time or exchange keys outside
the system, you can be certain you contact the same user),
but it cannot be used to establish initial identity, nor does
it effectively address node security. The central CA, even
when used completely offline, helps to solve these issues.

6



5.1 Problems Certificates Can Address

In communications systems, the source and destination
of information is not arbitrary. In many system, an indi-
vidual usually doesn’t care what the origin of information
(usually a file) is, or which users wish to obtain a copy.
Multiple copies of a particular piece of information may
exist in the system, and in generally all are of equivalent
value. In a communications system, communication is di-
rectly between two individuals, who need to be reachable in
a deterministic way.

A user needs to be able to repeatably identify a user of
the system. A user does not want conversations with “Alice”
to be with two different individuals depending on who is
logged in and claiming that identity. This means that a user
joining the system must have some way of uniquely assert-
ing over a prolonged time and spanning entering and leaving
the overlay that they are a particular individual. Ensuring
such identity in the absence of any centralized servers is a
very difficult problem.

Similarly, communications systems need to have the
ability to leave messages (text or other media) for offline
users. Since the messages will be stored by arbitrary nodes,
it is highly desirable to be able to encrypt the messages. En-
crypting media flows between parties is also desirable.

While not a problem that is unique to communications
systems, Sybil attacks [7] involve one entity attempting to
masquerade as multiple nodes in the overlay. Certificates
issued by a central authority can help detect and mitigate
these attacks

5.2 Certificate Mechanism Structure

To solve both of these problems, we introduce a central-
ized certificate authority (CA). This server is not consulted
on every transaction, but only when a new user (or node)
wishes to join the overlay. The CA can issue certificates
certifying several things (either separately or in a combined
certificate):

• That the person possessing the certificate is a valid
user with the specified username. The server tracks
and ensures all usernames are unique. That is, it
never issues certificates to two users with the same
username.

• That the node bearing the certificate is authorized to
join the system, and has the Node-ID specified in the
certificate. This Node-ID is a random number, not
tied to IP as in Chord. The Node-IDs are guaranteed
unique by the server.

• Certificate chains can be supported if the CA grants a
certificate to intermediaries responsible for certifying
nodes and users that belong to a particular domain,
such as the names of users of the form

user@domain.edu, and for nodes in the address space
controlled by that university. In this way, each
administrative domain can be operated separately
from the central CA.

A user must obtain a certificate for their username and
their node (this could be one certificate asserting both) be-
fore joining the system. For architectural reasons, we allow
the certificates to be separate. A particular device, for ex-
ample an IP phone, might have multiple users or “lines,” re-
quiring several User-IDs to be asserted, but only one Node-
ID. A user may be present on multiple devices, requiring
multiple Node-IDs but only one User-ID. Finally, devices
such as gateways, which allow VoIP calls to terminate onto
the PSTN might not be associated with a user, but might
still be a peer in the network. The certificates need to be
obtained from the CA before joining the network.

In addition to having their own certificates, each node
in the system has a copy of the public key for the CA, ob-
tained directly from the CA at the time the CA issued the
certificate. Any new node or user wishing to join the sys-
tem will be expected to present a certificate signed by the
CA, and any node will be able to validate the authenticity
of the certificate using their copy of the CA’s public key.

The public portion of the certificate for each user is
stored as a file in the overlay. These certificates persist, be-
ing transferred from one node to another as nodes enter and
leave the system. These public certificates are available at
all times, even when the user is offline, which allows secure
messages (voicemail) to be left for the user.

5.3 Securing the System with Certificates

These certificates allow a user to uniquely assert that they
are entitled to a particular user name within the system. This
helps to eliminate the namespace collision problem, and al-
lows users to ensure the individual they are communicating
with is in fact the asserted user. Communication between
users (online or offline) and nodes can be secured using the
certificates.

This approach can also be used to protect against Sybil
attacks. When a node tries to join, it must present a valid
certificate for the Node-ID it is attempting to use, and the
node currently responsible for that region of the overlay
must verify the certificate matches the Node-ID presented.
The CA can rate limit Sybil attacks using a number of
mechanisms. Perhaps the simplest mechanism would be to
charge a minimal cost for a certificate. Others might include
requiring a valid credit card number, that while not charged,
would not be allowed to obtain more certificates for a given
period, perhaps 24 hours. While this would be inconve-
nient, it would effectively prevent Sybil attacks. While the
certificates may be very low in cost, obtaining the hundreds,
thousands, or even millions required to corrupt an overlay

7



would be very costly. Because the Node-IDs are randomly
selected by the CA, it is very difficult to place a node in a
particular location.

This approach is arguably a hybrid approach. The server
involved in this case only has to be involved at the time the
certificate is issued (presumably when a new user joins the
system and some periodic period after certificates expire).
The CA doesn’t need to be consulted at any other time dur-
ing the interaction of the nodes of the system. Unlike a
centralized authentication server such as used in Skype [1],
this doesn’t represent a central point of failure, althoughit
is arguable that such a system does have a central entity in
charge, which might go against some ideas about P2P.

6. Conclusion

We have presented solutions to several of the problems
we have encountered moving DHT-based P2P communica-
tions systems from the lab to a real-world setting with com-
binations of residential, commercial, and academic systems.
In short, the P2P algorithms must be chosen based on the
control exerted over participation in the network.

• If a CA-based system can be used to establish identity
and monitor node additions, then routing algorithms
can be chosen based on efficiency (generally based on
the prevalence of NATs and firewalls in the
environment) and Node-ID selection can be assigned
with a simple uniform random distribution. However,
if policing of node behavior is unavailable or nodes
are easy to add, iterative routing will still be needed.

• For a more open system, the choices are more
restricted. Node-IDs must be chosen using a limited
scheme such as we present in Section 3 to control the
ability of nodes behind NATs to attack the DHT. In
such an environment, routing must be done iteratively
to avoid DoS amplification attacks.

References

[1] S. Baset and H. Shulzrinne. An Analysis of the Skype Peer-
to-Peer Internet Telephony Protocol. InINFOCOM2006,
Apr. 2006.

[2] S. Baset and H. Shulzrinne. Using an external DHT as a SIP
location service. Technical report, Feb. 2006.

[3] P. Biondi and F. Desclaux. Silver Needle in the Skype. Pre-
sentation at Black Hat Europe 2006, Feb. 2006.

[4] D. A. Bryan, B. B. Lowekamp, and C. Jennings. SOSIM-
PLE: A serverless, standards-based, P2P SIP communica-
tion system. InProceedings of the 2005 International Work-
shop on Advanced Architectures and Algorithms for Internet
Delivery and Applications (AAA-IDEA 2005). IEEE, 2005.

[5] D. A. Bryan, B. B. Lowekamp, and C. Jennings. draft-bryan-
sipping-p2p-02, Mar. 2006.

[6] B. Campbell, J. Rosenberg, H. Schulzrinne, C. Huitema, and
D. Gurle. RFC 3428 - session initiation protocol (SIP) ex-
tension for instant messaging, Dec. 2002.

[7] J. R. Douceur. The Sybil attack. InProceedings of the
IPTPS02 Workshop, Cambridge, MA, USA, Mar. 2002.

[8] B. Ford, P. Srisuresh, and D. Kegel. Peer-to-peer communi-
cation across network address translators. InProceedings of
USENIX 2005, pages 179–192, Anaheim, CA, April 2005.

[9] M. Freedman, K. Lakshminarayanan, S. Rhea, and I. Stoica.
Non-Transitive Connectivity and DHTs. InProceedings of
the 2005 Usenix Workshop on Real, Large-scale Distributed
Systems (WORLDS05), 2005.

[10] S. Guha, Y. Takeda, and P. Francis. NUTSS: A SIP-based
Approach to UDP and TCP Network Connectivity. InFuture
Directions in Network Architecture (FDNA-04), SIGCOMM
’04 Workshops, Portland, OR, Aug. 2004.

[11] IETF behave Working Group. http://www.ietf.
org/html.charters/behave-charter.html.

[12] K. Singh and H. Shulzrinne. http://www1.cs.
columbia.edu/∼kns10/research/p2p-sip.

[13] B. Leong, B. Liskov, and E. Demaine. Epichord: Paralleliz-
ing the chord lookup algorithm with reactive routing state
management. InProceedings of the 12th International Con-
ference on Networks (ICON 2004), Nov. 2004.

[14] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer
information system based on the XOR metric. InProceed-
ings of IPTPS02, Mar. 2002.

[15] A. Muthitacharoen, S. Gilbert, and R. Morris. Etna: A fault-
tolerant Algorithm for Atomic Mutable DHT Data. Techni-
cal Report MIT-LCS-TR-993, MIT-LCS, June 2005.

[16] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy,
S. Shenker, and J. Hellerstein. OpenDHT: A Public DHT
Service and Its Uses. InProceedings of ACM SIGCOMM
2005, 2005.

[17] R. Rodriques and B. Liskov. Rosebud: A scalable
byzantine-fault-tolerant storage architecture. Technical Re-
port TR/932, MIT CSAIL, Dec. 2003.

[18] J. Rosenberg. draft-ietf-mmusic-ice-08, Mar. 2006.
[19] J. Rosenberg, C. Huitema, R. Mahy, and D. Wing. RFC

3489 - Simple Traversal of UDP Through Network Address
Translators (NAT) (STUN), Feb. 2006.

[20] J. Rosenberg, R. Mahy, and C. Huitema. draft-rosenberg-
midcom-turn-07, Feb. 2005.

[21] J. Rosenberg and H. Schulzrinne. RFC 3263 - Session Initi-
ation Protocol (SIP): Locating SIP Servers, June 2002.

[22] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston,
J. Peterson, R. Sparks, M. Handley, and E. Schooler. RFC
3261 - SIP : Session initiation protocol, June 2002.

[23] K. Singh and H. Schulzrinne. Peer-to-peer internet tele-
phony using sip. InProceedings of the 2005 Network
and Operating System Support for Digital Audio and Video
(NOSSDAV 2005), 2005.

[24] Skype Technologies, S.A.http://www.skype.org/.
[25] I. Stoica, R. Morris, D. Karger, M. Kaashock, F. Dabek, and

H. Balakrishman. Chord: A scalable peer-to-peer lookup
protocol for internet applications.IEEE/ACM Transactions
on Neworking, 11(1), 2003.

8


